Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Am J Kidney Dis ; 71(5): 754-757, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29224958

RESUMO

We report a case of a patient who had the mitochondrial cytopathy complex of neuropathy, ataxia, and retinitis pigmentosa (NARP) syndrome diagnosed at age 11 years with a biopsy-proven kidney involvement that progressed to end-stage renal disease at age 21 years. Mutations of mitochondrial DNA (mtDNA) are maternally inherited and lead to mitochondrial cytopathies with predominant neurologic manifestations: psychomotor retardation, epilepsy, ataxia, neuropathy, and myopathy. Given the ubiquitous nature of mitochondria, cellular dysfunction can also appear in tissues with high metabolic turnover; thus, there can be cardiac, digestive, ophthalmologic, and kidney complications. Mutations in the MT-ATP6 gene of mtDNA have been shown to cause NARP syndrome without renal involvement. We report a patient who had NARP syndrome diagnosed at age 11 years in whom glomerular proteinuria was present very early after diagnosis. Although neurologic manifestations were stable over time, he developed worsening proteinuria and kidney function. He started dialysis therapy at age 21 years. Kidney biopsy confirmed the mitochondrial cytopathy histologically, with abnormal mitochondria seen on electron microscopy. The MT-ATP6 gene mutation was detected in the kidney biopsy specimen.


Assuntos
Predisposição Genética para Doença , Nefropatias/patologia , Nefropatias/terapia , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Adolescente , Ataxia/fisiopatologia , Biópsia por Agulha , Criança , Progressão da Doença , Seguimentos , Humanos , Imuno-Histoquímica , Síndrome de Kearns-Sayre/fisiopatologia , Nefropatias/fisiopatologia , Masculino , Miopatias Mitocondriais/fisiopatologia , Miopatias Mitocondriais/terapia , Doenças Raras , Diálise Renal , Retinose Pigmentar/fisiopatologia , Retinose Pigmentar/terapia , Resultado do Tratamento , Adulto Jovem
2.
Sci Rep ; 6: 26700, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27221760

RESUMO

The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient.


Assuntos
Translocador 1 do Nucleotídeo Adenina/deficiência , Fibroblastos/metabolismo , Potencial da Membrana Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Calcimicina/farmacologia , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Proteínas de Transporte da Membrana Mitocondrial/genética , Poro de Transição de Permeabilidade Mitocondrial
3.
Am J Med Genet A ; 167A(10): 2366-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26061759

RESUMO

We report on clinical, genetic and metabolic investigations in a family with optic neuropathy, non-progressive cardiomyopathy and cognitive disability. Ophthalmic investigations (slit lamp examination, funduscopy, OCT scan of the optic nerve, ERG and VEP) disclosed mild or no decreased visual acuity, but pale optic disc, loss of temporal optic fibers and decreased VEPs. Mitochondrial DNA and exome sequencing revealed a novel homozygous mutation in the nuclear MTO1 gene and the homoplasmic m.593T>G mutation in the mitochondrial MT-TF gene. Muscle biopsy analyses revealed decreased oxygraphic Vmax values for complexes I+III+IV, and severely decreased activities of the respiratory chain complexes (RCC) I, III and IV, while muscle histopathology was normal. Fibroblast analysis revealed decreased complex I and IV activity and assembly, while cybrid analysis revealed a partial complex I deficiency with normal assembly of the RCC. Thus, in patients with a moderate clinical presentation due to MTO1 mutations, the presence of an optic atrophy should be considered. The association with the mitochondrial mutation m.593T>G could act synergistically to worsen the complex I deficiency and modulate the MTO1-related disease.


Assuntos
Cardiomiopatias/genética , Proteínas de Transporte/genética , Homozigoto , Deficiência Intelectual/genética , Mutação , Doenças do Nervo Óptico/genética , RNA de Transferência de Fenilalanina/genética , Adulto , Cardiomiopatias/complicações , Cardiomiopatias/diagnóstico , Cardiomiopatias/patologia , Análise Mutacional de DNA , Complexo I de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Expressão Gênica , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Potencial da Membrana Mitocondrial/genética , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Disco Óptico/metabolismo , Disco Óptico/patologia , Doenças do Nervo Óptico/complicações , Doenças do Nervo Óptico/diagnóstico , Doenças do Nervo Óptico/patologia , Linhagem , Proteínas de Ligação a RNA , Acuidade Visual
4.
Hum Mol Genet ; 24(14): 3948-55, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25901006

RESUMO

Mitochondrial complex I (CI) deficiencies are causing debilitating neurological diseases, among which, the Leber Hereditary Optic Neuropathy and Leigh Syndrome are the most frequent. Here, we describe the first germinal pathogenic mutation in the NDUFA13/GRIM19 gene encoding a CI subunit, in two sisters with early onset hypotonia, dyskinesia and sensorial deficiencies, including a severe optic neuropathy. Biochemical analysis revealed a drastic decrease in CI enzymatic activity in patient muscle biopsies, and reduction of CI-driven respiration in fibroblasts, while the activities of complex II, III and IV were hardly affected. Western blots disclosed that the abundances of NDUFA13 protein, CI holoenzyme and super complexes were drastically reduced in mitochondrial fractions, a situation that was reproduced by silencing NDUFA13 in control cells. Thus, we established here a correlation between the first mutation yet identified in the NDUFA13 gene, which induces CI instability and a severe but slowly evolving clinical presentation affecting the central nervous system.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Discinesias/genética , Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/genética , Hipotonia Muscular/genética , NADH NADPH Oxirredutases/genética , Proteínas Reguladoras de Apoptose/metabolismo , Criança , Pré-Escolar , Complexo I de Transporte de Elétrons/genética , Feminino , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Mutação , NADH NADPH Oxirredutases/metabolismo , Fases de Leitura Aberta , Linhagem
5.
Eur J Hum Genet ; 22(4): 542-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23921535

RESUMO

Polymerase gamma (POLG) is the gene most commonly involved in mitochondrial disorders with mitochondrial DNA instability and causes a wide range of diseases with recessive or dominant transmission. More than 170 mutations have been reported. Most of them are missense mutations, although nonsense mutations, splice-site mutations, small deletions and insertions have also been identified. However, to date, only one large-scale rearrangement has been described in a child with Alpers syndrome. Below, we report a large cohort of 160 patients with clinical, molecular and/or biochemical presentation suggestive of POLG deficiency. Using sequencing, we identified POLG variants in 22 patients (18 kindreds) including five novel pathogenic mutations. Two patients with novel mutations had unusual clinical presentation: the first exhibited an isolated ataxic neuropathy and the second was a child who presented with endocrine signs. We completed the sequencing step by quantitative multiplex PCR of short fluorescent fragments (QMPSF) analysis in 37 patients with either only one POLG heterozygous variant or a family history suggesting a dominant transmission. We identified a large intragenic deletion encompassing part of intron 21 and exon 22 of POLG in a child with refractory epilepsia partialis continua. In conclusion, we describe the first large French cohort of patients with POLG mutations, expanding the wide clinical and molecular spectrum observed in POLG disease. We confirm that large deletions in the POLG gene are rare events and we highlight the importance of QMPSF in patients with a single heterozygous POLG mutation, particularly in severe infantile phenotypes.


Assuntos
DNA Polimerase Dirigida por DNA/deficiência , DNA Polimerase Dirigida por DNA/genética , Rearranjo Gênico , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , DNA Polimerase gama , DNA Mitocondrial/genética , Epilepsia Parcial Contínua/genética , Éxons , Feminino , França , Heterozigoto , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/genética , Reação em Cadeia da Polimerase Multiplex , Fenótipo , Análise de Sequência de DNA , Deleção de Sequência , População Branca , Adulto Jovem
6.
Neurology ; 81(17): 1523-30, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24027061

RESUMO

OBJECTIVE: To investigate whether mutations in the SURF1 gene are a cause of Charcot-Marie-Tooth (CMT) disease. METHODS: We describe 2 patients from a consanguineous family with demyelinating autosomal recessive CMT disease (CMT4) associated with the homozygous splice site mutation c.107-2A>G in the SURF1 gene, encoding an assembly factor of the mitochondrial respiratory chain complex IV. This observation led us to hypothesize that mutations in SURF1 might be an unrecognized cause of CMT4, and we investigated SURF1 in a total of 40 unrelated patients with CMT4 after exclusion of mutations in known CMT4 genes. The functional impact of c.107-2A>G on splicing, amount of SURF1 protein, and on complex IV activity and assembly was analyzed. RESULTS: Another patient with CMT4 was found to harbor 2 additional SURF1 mutations. All 3 patients with SURF1-associated CMT4 presented with severe childhood-onset neuropathy, motor nerve conduction velocities <25 m/s, and lactic acidosis. Two patients had brain MRI abnormalities, including putaminal and periaqueductal lesions, and developed cerebellar ataxia years after polyneuropathy. The c.107-2A>G mutation produced no normally spliced transcript, leading to SURF1 absence. However, complex IV remained partially functional in muscle and fibroblasts. CONCLUSIONS: We found SURF1 mutations in 5% of families (2/41) presenting with CMT4. SURF1 should be systematically screened in patients with childhood-onset severe demyelinating neuropathy and additional features such as lactic acidosis, brain MRI abnormalities, and cerebellar ataxia developing years after polyneuropathy.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Adulto , Idade de Início , Doença de Charcot-Marie-Tooth/patologia , Pré-Escolar , Consanguinidade , Feminino , Homozigoto , Humanos , Masculino , Proteínas de Membrana/deficiência , Pessoa de Meia-Idade , Proteínas Mitocondriais/deficiência , Mutação/genética , Linhagem , Fenótipo , Splicing de RNA/genética
7.
Hum Mol Genet ; 22(25): 5096-106, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23900073

RESUMO

Increased mitochondrial mass, commonly termed mitochondrial proliferation, is frequently observed in many human diseases directly or indirectly involving mitochondrial dysfunction. Mitochondrial proliferation is thought to counterbalance a compromised energy metabolism, yet it might also be detrimental through alterations of mitochondrial regulatory functions such as apoptosis, calcium metabolism or oxidative stress. Here, we show that prominent mitochondrial proliferation occurs in Cramping mice, a model of hereditary neuropathy caused by a mutation in the dynein heavy chain gene Dync1h1. The mitochondrial proliferation correlates with post-prandial induction of full-length (FL) and N-terminal truncated (NT) isoforms of the transcriptional co-activator PGC-1α. The selective knock-out of FL-PGC-1α isoform, preserving expression and function of NT-PGC-1α, led to a complete reversal of mitochondrial proliferation. Moreover, FL-PGC-1α ablation potently exacerbated the mitochondrial dysfunction and led to severe weight loss. Finally, FL-PGC-1α ablation triggered pronounced locomotor dysfunction, tremors and inability to rear in Cramping mice. In summary, endogenous FL-PGC-1α activates mitochondrial proliferation and salvages neurological and metabolic health upon disease. NT-PGC-1α cannot fulfil this protective action. Activation of this endogenous salvage pathway might thus be a valuable therapeutic target for diseases involving mitochondrial dysfunction.


Assuntos
Metabolismo Energético/genética , Mitocôndrias/metabolismo , Isoformas de Proteínas/genética , Fatores de Transcrição/genética , Animais , Apoptose/genética , Proliferação de Células , Dineínas do Citoplasma/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Estresse Oxidativo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fenótipo , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/metabolismo
8.
J Med Genet ; 50(10): 704-14, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23847141

RESUMO

BACKGROUND: Mitochondrial DNA (mtDNA) diseases are rare disorders whose prevalence is estimated around 1 in 5000. Patients are usually tested only for deletions and for common mutations of mtDNA which account for 5-40% of cases, depending on the study. However, the prevalence of rare mtDNA mutations is not known. METHODS: We analysed the whole mtDNA in a cohort of 743 patients suspected of manifesting a mitochondrial disease, after excluding deletions and common mutations. Both heteroplasmic and homoplasmic variants were identified using two complementary strategies (Surveyor and MitoChip). Multiple correspondence analyses followed by hierarchical ascendant cluster process were used to explore relationships between clinical spectrum, age at onset and localisation of mutations. RESULTS: 7.4% of deleterious mutations and 22.4% of novel putative mutations were identified. Pathogenic heteroplasmic mutations were more frequent than homoplasmic mutations (4.6% vs 2.8%). Patients carrying deleterious mutations showed symptoms before 16 years of age in 67% of cases. Early onset disease (<1 year) was significantly associated with mutations in protein coding genes (mainly in complex I) while late onset disorders (>16 years) were associated with mutations in tRNA genes. MTND5 and MTND6 genes were identified as 'hotspots' of mutations, with Leigh syndrome accounting for the large majority of associated phenotypes. CONCLUSIONS: Rare mitochondrial DNA mutations probably account for more than 7.4% of patients with respiratory chain deficiency. This study shows that a comprehensive analysis of mtDNA is essential, and should include young children, for an accurate diagnosis that is now accessible with the development of next generation sequencing technology.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Mutação , Adolescente , Adulto , Idade de Início , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/epidemiologia , Fenótipo , Prevalência , Adulto Jovem
9.
Blood ; 119(18): 4272-4, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22427206

RESUMO

Arsenic trioxide (ATO) has been successfully used as a treatment for acute promyelocytic leukemia (APL) for more than a decade. Here we report a patient with APL who developed a mitochondrial myopathy after treatment with ATO. Three months after ATO therapy withdrawal, the patient was unable to walk without assistance and skeletal muscle studies showed a myopathy with abundant cytoplasmic lipid droplets, decreased activities of the mitochondrial respiratory chain complexes, multiple mitochondrial DNA (mtDNA) deletions, and increased muscle arsenic content. Six months after ATO treatment was interrupted, the patient recovered normal strength, lipid droplets had decreased in size and number, respiratory chain complex activities were partially restored, but multiple mtDNA deletions and increased muscle arsenic content persisted. ATO therapy may provoke a delayed, severe, and partially reversible mitochondrial myopathy, and a long-term careful surveillance for muscle disease should be instituted when ATO is used in patients with APL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Arsenicais/efeitos adversos , Leucemia Promielocítica Aguda/tratamento farmacológico , Miopatias Mitocondriais/induzido quimicamente , Óxidos/efeitos adversos , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Trióxido de Arsênio , Arsenicais/administração & dosagem , Análise Mutacional de DNA , Feminino , Humanos , Leucemia Promielocítica Aguda/complicações , Mitocôndrias Musculares/efeitos dos fármacos , Miopatias Mitocondriais/patologia , Óxidos/administração & dosagem , Tretinoína/administração & dosagem
10.
J Med Genet ; 49(2): 146-50, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22187496

RESUMO

BACKGROUND: The ANT1 gene, encoding ADP/ATP translocase 1, was investigated in an adult patient with an autosomal recessive mitochondrial disorder characterised by congenital cataracts, hypertrophic cardiomyopathy, myopathy and lactic acidosis. METHODS AND RESULTS: ANT1 sequencing showed that the patient was homozygous for a new nucleotide variation, c.111+1G→A, abolishing the invariant GT splice donor site of intron 1. The ANT1 transcript was undetectable in both muscle and skin fibroblasts. A markedly abnormal metabolic profile was found, and skeletal muscle showed a dramatic proliferation of abnormal mitochondria, increased mitochondrial mass, and multiple mitochondrial DNA deletions. No compensating increase in the transcript level of the ANT3 gene, which encodes the human ubiquitous isoform of the ADP/ATP translocase, was observed. The patient's heterozygous mother had normal clinical, biochemical and pathological features. CONCLUSIONS: Complete loss of expression of the ANT1 gene causes a clinical syndrome mainly characterised by cardiomyopathy and myopathy. This report expands the clinical spectrum of ANT1-related human diseases, and emphasises the crucial role of the mitochondrial ADP/ATP carriers in muscle function and pathophysiology of human myopathies.


Assuntos
Translocador 1 do Nucleotídeo Adenina/genética , Cardiomiopatia Hipertrófica/genética , Miopatias Mitocondriais/genética , Translocador 3 do Nucleotídeo Adenina/genética , Adulto , Sequência de Bases , Cardiomiopatia Hipertrófica/diagnóstico , Células Cultivadas , DNA Polimerase gama , DNA Polimerase Dirigida por DNA/genética , Éxons , Feminino , Expressão Gênica , Humanos , Imageamento por Ressonância Magnética , Miopatias Mitocondriais/diagnóstico , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Mutação , Neuroimagem , Linhagem , Adulto Jovem
11.
Mitochondrion ; 11(1): 223-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20691285

RESUMO

The POLG genes were sequenced in two unrelated patients presenting with Alpers syndrome. The novel c.3626_3629dupGATA and the c.3643+2T>C alleles were associated in trans with p.A467T and p.[W748S;E1143G], respectively. POLG transcripts from skin fibroblasts showed complete exon 22 skipping for patient 2, but surprisingly partial exon 22 skipping from the c.3626_3629dupGATA for patient 1. The creation of a putative exonic splicing silencer could be responsible for the splicing anomaly observed in patient 1. Both c.3643+2T>C and c.3626_3629dupGATA create a premature termination codon and a low polymerase γ activity in skin fibroblasts is responsible for the severe phenotype in these patients.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Esclerose Cerebral Difusa de Schilder/genética , Éxons/genética , Variação Genética , Splicing de RNA , Pré-Escolar , Códon sem Sentido/genética , DNA Polimerase gama , DNA Polimerase Dirigida por DNA/metabolismo , Esclerose Cerebral Difusa de Schilder/diagnóstico , Evolução Fatal , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mutação , Análise de Sequência de DNA
12.
Arch Neurol ; 67(9): 1140-3, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20837861

RESUMO

OBJECTIVE: To describe 2 unrelated patients with novel variations in the POLG1 gene and features undistinguishable from multiple sclerosis, ie, optic neuritis, brain white matter hyperintense areas, and unmatched cerebrospinal fluid oligoclonal bands. DESIGN: Case report. SETTING: University hospital. Patients  Both patients subsequently developed bilateral ophthalmoplegia, ptosis, myopathy, cardiomyopathy, ataxia, dysphagia, and hearing and cognitive impairment. MAIN OUTCOME MEASURES: Detailed clinical and laboratory examinations including brain magnetic resonance imaging, morphological analysis of a muscle biopsy, characterization of mitochondrial DNA integrity, sequencing of the POLG1 gene, and screening of control subjects for POLG1 sequence variants. RESULTS: Ragged red fibers and multiple deletions of mitochondrial DNA were detected in the skeletal muscle. Four compound heterozygous variations, including 3 previously unreported, were identified in POLG1. CONCLUSION: Clinicians should be aware of the existence of POLG1-related multiple sclerosis-like illness, as it has important implications for management, treatment, and genetic counseling.


Assuntos
Encéfalo/patologia , DNA Polimerase Dirigida por DNA/genética , Esclerose Múltipla/genética , Músculo Esquelético/patologia , Mutação , Adulto , DNA Polimerase gama , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Diagnóstico Diferencial , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Músculo Esquelético/metabolismo
13.
Neurogenetics ; 11(1): 21-5, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19513767

RESUMO

Variations in the mitochondrial helicase Twinkle (PEO1) gene are usually associated with autosomal dominant chronic progressive external ophthalmoplegia (PEO). We describe five patients from two unrelated Alsatian families with the new R374W variation in the Twinkle linker region who progressively developed an autosomal dominant multisystem disorder with PEO, hearing loss, myopathy, dysphagia, dysphonia, sensory neuropathy, and late-onset dementia resembling Alzheimer's disease. These observations demonstrate that Twinkle variations in the linker domain alter cerebral function and further implicate disrupted mitochondrial DNA integrity in the pathogenesis of dementia.


Assuntos
DNA Helicases/genética , DNA Mitocondrial/genética , Demência/genética , Oftalmoplegia Externa Progressiva Crônica/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Demência/diagnóstico , Feminino , Genes Dominantes , Humanos , Masculino , Doenças Mitocondriais/genética , Proteínas Mitocondriais , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Neurofisiologia/métodos , Oftalmoplegia Externa Progressiva Crônica/diagnóstico , Linhagem
14.
Liver Transpl ; 14(10): 1480-5, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18825706

RESUMO

Deoxyguanosine kinase (DGUOK) deficiency is the commonest type of mitochondrial DNA depletion associated with a hepatocerebral phenotype. In this article, we evaluate predictors of survival and therapeutic options in patients with DGUOK deficiency. A systematic search of MEDLINE, LILAC, and SCIELO was carried out to identify peer-reviewed clinical trials, randomized controlled trials, meta-analyses, and other studies with clinical pertinence. DGUOK deficiency was searched with the terms dGK, DGUOK, mitochondrial DNA depletion, mtDNA, and hepatocerebral. Bibliographies of identified articles were reviewed for additional references. Thirteen identified studies met the inclusion criteria and were used in this study. The analysis revealed that DGUOK deficiency is associated with a variable clinical phenotype. Long-term survival is best predicted by the absence of profound hypotonia, significant psychomotor retardation, or nystagmus. In the presence of these features, there is increased mortality, and liver transplantation does not confer increased survival. In summary, liver transplantation appears to be futile in the presence of specific neurological signs or symptoms in patients affected with DGUOK deficiency. Conversely, in the absence of these neurological features, liver transplantation may be considered a potential treatment.


Assuntos
DNA Mitocondrial/metabolismo , Encefalopatia Hepática/cirurgia , Transplante de Fígado , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Criança , Pré-Escolar , Contraindicações , Feminino , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/mortalidade , Humanos , Lactente , Estimativa de Kaplan-Meier , Masculino , Prognóstico
15.
BMC Med Genet ; 9: 41, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18462486

RESUMO

BACKGROUND: The A3243G mutation in the tRNALeu gene (UUR), is one of the most common pathogenic mitochondrial DNA (mtDNA) mutations in France, and is associated with highly variable and heterogeneous disease phenotypes. To define the relationships between the A3243G mutation and mtDNA backgrounds, we determined the haplogroup affiliation of 142 unrelated French patients - diagnosed as carriers of the A3243G mutation - by control-region sequencing and RFLP survey of their mtDNAs. RESULTS: The analysis revealed 111 different haplotypes encompassing all European haplogroups, indicating that the 3243 site might be a mutational hot spot. However, contrary to previous findings, we observed a statistically significant underepresentation of the A3243G mutation on haplogroup J in patients (p = 0.01, OR = 0.26, C.I. 95%: 0.08-0.83), suggesting that might be due to a strong negative selection at the embryo or germ line stages. CONCLUSION: Thus, our study supports the existence of mutational hotspot on mtDNA and a "haplogroup J paradox," a haplogroup that may increase the expression of mtDNA pathogenic mutations, but also be beneficial in certain environmental contexts.


Assuntos
DNA Mitocondrial/genética , Haplótipos , Polimorfismo de Nucleotídeo Único , RNA de Transferência de Leucina/genética , Estudos de Coortes , DNA/sangue , DNA/genética , DNA/isolamento & purificação , França , Humanos , Doenças Mitocondriais/genética , Mutação , Filogenia , Polimorfismo de Fragmento de Restrição , População Branca/genética
16.
Biochem J ; 402(2): 377-85, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17073823

RESUMO

DGUOK [dG (deoxyguanosine) kinase] is one of the two mitochondrial deoxynucleoside salvage pathway enzymes involved in precursor synthesis for mtDNA (mitochondrial DNA) replication. DGUOK is responsible for the initial rate-limiting phosphorylation of the purine deoxynucleosides, using a nucleoside triphosphate as phosphate donor. Mutations in the DGUOK gene are associated with the hepato-specific and hepatocerebral forms of MDS (mtDNA depletion syndrome). We identified two missense mutations (N46S and L266R) in the DGUOK gene of a previously reported child, now 10 years old, who presented with an unusual revertant phenotype of liver MDS. The kinetic properties of normal and mutant DGUOK were studied in mitochondrial preparations from cultured skin fibroblasts, using an optimized methodology. The N46S/L266R DGUOK showed 14 and 10% residual activity as compared with controls with dG and deoxyadenosine as phosphate acceptors respectively. Similar apparent negative co-operativity in the binding of the phosphate acceptors to the wild-type enzyme was found for the mutant. In contrast, abnormal bimodal kinetics were shown with ATP as the phosphate donor, suggesting an impairment of the ATP binding mode at the phosphate donor site. No kinetic behaviours were found for two other patients with splicing defects or premature stop codon. The present study represents the first characterization of the enzymatic kinetic properties of normal and mutant DGUOK in organello and our optimized protocol allowed us to demonstrate a residual activity in skin fibroblast mitochondria from a patient with a revertant phenotype of MDS. The residual DGUOK activity may play a crucial role in the phenotype reversal.


Assuntos
DNA Mitocondrial/genética , Fígado/citologia , Fígado/enzimologia , Mutação/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células Cultivadas , Pré-Escolar , Fibroblastos , Deleção de Genes , Humanos , Lactente , Recém-Nascido , Cinética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Fosfatos/metabolismo , RNA Mensageiro/genética
17.
Biochem Biophys Res Commun ; 332(2): 542-9, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15896715

RESUMO

Mitochondrial respiratory chain deteriorates with age, mostly in tissues with high energy requirements. Damage to mitochondrial DNA (mtDNA) by reactive oxygen species is thought to contribute primarily to this impairment. However, the overall extent of random mtDNA mutations has still not been evaluated. We carried out molecular and biochemical analyses in muscle biopsies from healthy young and aged subjects. Deleted mtDNA accumulation was followed by both quantitative PCR analysis to quantify total mtDNA, and Southern-blotting, to determine deleted to full length mtDNA ratio. Enzymatic activities of the mitochondrial respiratory chain were measured in all subjects. Randomly deleted mtDNA appeared mainly in the oldest subjects (beyond 80 years old), affecting up to 70% of mtDNA molecules. The activities of complexes III and IV of the respiratory chain, complexes with mtDNA encoded subunits, are lower in the aged subjects. Physical activity could be one major parameter modulating the mitochondrial respiratory chain activity in aged muscle.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Análise Mutacional de DNA/métodos , DNA Mitocondrial/genética , Transporte de Elétrons/fisiologia , Músculo Esquelético/fisiologia , Adolescente , Adulto , Idoso , Feminino , Deleção de Genes , Humanos , Masculino , Estatística como Assunto
18.
Biochem J ; 383(Pt. 3): 491-9, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15250827

RESUMO

Mitochondria-encoded ND (NADH dehydrogenase) subunits, as components of the hydrophobic part of complex I, are essential for NADH:ubiquinone oxidoreductase activity. Mutations or lack of expression of these subunits have significant pathogenic consequences in humans. However, the way these events affect complex I assembly is poorly documented. To understand the effects of particular mutations in ND subunits on complex I assembly, we studied four human cell lines: ND4 non-expressing cells, ND5 non-expressing cells, and rho degrees cells that do not express any ND subunits, in comparison with normal complex I control cells. In control cells, all the seven analysed nuclear-encoded complex I subunits were found to be attached to the mitochondrial inner membrane, except for the 24 kDa subunit, which was nearly equally partitioned between the membranes and the matrix. Absence of a single ND subunit, or even all the seven ND subunits, caused no major changes in the nuclear-encoded complex I subunit content of mitochondria. However, in cells lacking ND4 or ND5, very low amounts of 24 kDa subunit were found associated with the membranes, whereas most of the other nuclear-encoded subunits remained attached. In contrast, membrane association of most of the nuclear subunits was significantly reduced in the absence of all seven ND proteins. Immunopurification detected several subcomplexes. One of these, containing the 23, 30 and 49 kDa subunits, also contained prohibitin. This is the first description of prohibitin interaction with complex I subunits and suggests that this protein might play a role in the assembly or degradation of mitochondrial complex I.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/fisiologia , Mitocôndrias/enzimologia , NADH Desidrogenase/fisiologia , Proteínas Repressoras/metabolismo , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , DNA de Neoplasias/genética , Genótipo , Humanos , Espectrometria de Massas/métodos , Mitocôndrias/fisiologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/fisiologia , NADH Desidrogenase/química , Osteossarcoma/enzimologia , Osteossarcoma/genética , Osteossarcoma/patologia , Fosforilação Oxidativa , Proibitinas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia
19.
Clin Chem ; 49(8): 1309-17, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12881447

RESUMO

BACKGROUND: Many mitochondrial pathologies are quantitative disorders related to tissue-specific deletion, depletion, or overreplication of mitochondrial DNA (mtDNA). We developed an assay for the determination of mtDNA copy number by real-time quantitative PCR for the molecular diagnosis of such alterations. METHODS: To determine altered mtDNA copy number in muscle from nine patients with single or multiple mtDNA deletions, we generated calibration curves from serial dilutions of cloned mtDNA probes specific to four different mitochondrial genes encoding either ribosomal (16S) or messenger (ND2, ND5, and ATPase6) RNAs, localized in different regions of the mtDNA sequence. This method was compared with quantification of radioactive signals from Southern-blot analysis. We also determined the mitochondrial-to-nuclear DNA ratio in muscle, liver, and cultured fibroblasts from a patient with mtDNA depletion and in liver from two patients with mtDNA overreplication. RESULTS: Both methods quantified 5-76% of deleted mtDNA in muscle, 59-97% of mtDNA depletion in the tissues, and 1.7- to 4.1-fold mtDNA overreplication in liver. The data obtained were concordant, with a linear correlation coefficient (r(2)) between the two methods of 0.94, and indicated that quantitative PCR has a higher sensitivity than Southern-blot analysis. CONCLUSIONS: Real-time quantitative PCR can determine the copy number of either deleted or full-length mtDNA in patients with mitochondrial diseases and has advantages over classic Southern-blot analysis.


Assuntos
DNA Mitocondrial/análise , Doenças Mitocondriais/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Replicação do DNA , DNA Mitocondrial/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/genética , Mutação , Reação em Cadeia da Polimerase , Deleção de Sequência
20.
Genome Res ; 12(12): 1901-9, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12466294

RESUMO

We have measured, by reverse transcription and real-time quantitative PCR, the steady-state levels of the mitochondrial and nuclear transcripts encoding several subunits of the human oxidative phosphorylation (OXPHOS) system, in different normal tissues (muscle, liver, trachea, and kidney) and in cultured cells (normal fibroblasts, 143B osteosarcoma cells, 143B206 rho(0) cells). Five mitochondrial transcripts and nine nuclear transcripts were assessed. The measured amounts of these OXPHOS transcripts in muscle samples corroborated data obtained by others using the serial analysis of gene expression (SAGE) method to appraise gene expression in the same type of tissue. Steady-state levels for all the transcripts were found to range over more than two orders of magnitude. Most of the time, the mitochondrial H-strand transcripts were present at higher levels than the nuclear transcripts. The mitochondrial L-strand transcript ND6 was usually present at a low level. Cultured 143B cells contained significantly reduced amounts of mitochondrial transcripts in comparison with the tissue samples. In 143B206 rho(0) cells, fully depleted of mitochondrial DNA, the levels of nuclear OXPHOS transcripts were not modified in comparison with the parental cells. This observation indicated that nuclear transcription is not coordinated with mitochondrial transcription. We also observed that in the different tissues and cells, there is a transcriptional coregulation of all the investigated nuclear genes. Nuclear OXPHOS gene expression seems to be finely regulated.


Assuntos
Núcleo Celular/genética , Códon/genética , Mitocôndrias/genética , Fosforilação Oxidativa , RNA Nuclear/genética , RNA/genética , Transcrição Gênica , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Células Cultivadas , Códon/metabolismo , Códon/fisiologia , Perfilação da Expressão Gênica/métodos , Variação Genética/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases/fisiologia , RNA/metabolismo , RNA/fisiologia , RNA Mitocondrial , RNA Nuclear/metabolismo , RNA Nuclear/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Pele/citologia , Pele/enzimologia , Pele/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA